On the Backward Euler Approximation of the Stochastic Allen-Cahn Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Backward Euler Approximation of the Stochastic Allen-Cahn Equation

We consider the stochastic Allen-Cahn equation perturbed by smooth additive Gaussian noise in a spatial domain with smooth boundary in dimension d ≤ 3, and study the semidiscretization in time of the equation by an implicit Euler method. We show that the method converges pathwise with a rate O(∆tγ) for any γ < 1 2 . We also prove that the scheme converges uniformly in the strong Lp-sense but wi...

متن کامل

Tightness for a Stochastic Allen–cahn Equation

We study an Allen–Cahn equation perturbed by a multiplicative stochastic noise that is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive a uniform bound for the diffuse surface area, prove the tightness of solutions in the sharp interface limit, and show the convergence to phase-indicator functions.

متن کامل

Triviality of the 2D stochastic Allen-Cahn equation

We consider the stochastic Allen-Cahn equation driven by mollified space-time white noise. We show that, as the mollifier is removed, the solutions converge weakly to 0, independently of the initial condition. If the intensity of the noise simultaneously converges to 0 at a sufficiently fast rate, then the solutions converge to those of the deterministic equation. At the critical rate, the limi...

متن کامل

A Generalization of the Allen-cahn Equation

Our aim in this paper is to study generalizations of the Allen-Cahn equation based on a modification of the Ginzburg-Landau free energy proposed in [25]. In particular, the free energy contains an additional term called Willmore regularization. We prove the existence, uniqueness and regularity of solutions, as well as the existence of the global attractor. Furthermore, we study the convergence ...

متن کامل

Boundary Interface for the Allen-cahn Equation

We consider the Allen-Cahn equation ε∆u + u− u = 0 in Ω, ∂u ∂ν = 0 on ∂Ω, where Ω is a smooth and bounded domain in R such that the mean curvature is positive at each boundary point. We show that there exists a sequence εj → 0 such that the Allen-Cahn equation has a solution uεj with an interface which approaches the boundary as j → +∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2015

ISSN: 0021-9002,1475-6072

DOI: 10.1239/jap/1437658601